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Abstract

Time series analysis with the prediction theory belong to powerful tools providing impor-
tant information for decision making not only in the field of the natural or social sciences,
but also e.g. in economics, insurance, engineering, telecommunications or traffic. In the
contribution we introduce main ideas of the best linear unbiased prediction (BLUP) —
one of the most important approaches in the time series forecasting. Simultaneously we
apply this method to a general class of time series models called finite discrete spectrum
linear regression models (FDSLRM). The derived form of the mean squared error for the
BLUP in the most general FDSLRM by us provides the criterion of the prediction quality
and can be also used for a useful classification of various FDSLRM models.

Keywords: time series forecasting, prediction quality, best linear unbiased predictor,
mean squared error, finite discrete spectrum linear regression model

1 INTRODUCTION

The need to obtain sufficiently accurate predictions from observed data can be found
not only in all scientific disciplines, but also in many human activities like industry, eco-
nomics or business. Therefore forecasting future values of a time series belongs to the
most important problems of the statistical inference from time series data.

Some of the most popular prediction approaches, the Box-Jenkins methods (Box et
al [1]) are based on ARMA, ARIMA and SARIMA models. An alternative theory, also
one of the most important approaches in time series theory, using linear regression models
is the best linear unbiased prediction theory (see e.g. Brockwell and Davis [2], Stein [9],
Christensen [3] or Stulajter [10]).

Historical records acknowledge American econometrician A. S. Goldberger [4] as the
first discoverer (1962) of a general form of the best linear unbiased predictor (BLUP) for
linear models. At this time BLUP was seen by econometricians primarily as a predic-
tion tool for time series. However mathematically identical approach, but with different
name kriging was independently suggested approximately at the same time in geostatis-
tics during solving a mining engineering problem how to predict quality of an ore deposit
from known sample spatial data. Identical mathematical ideas were also developed in
meteorology.

The ideas of best linear prediction and best linear unbiased prediction are very impor-
tant, because it has important application in standard linear models, mixed models, and
the analysis of spatial data. The theory is also a part of multivariate analysis, is significant
for general stochastic processes, time series, principal component analysis and is the basis
for linear Bayesian methods (see detailed references e.g. in Christensen [3]).

*This work was supported by the grant 1/3001/06 of the Slovak Scientific Grant Agency (VEGA).
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In the paper we shall introduce key ideas of the best linear unbiased prediction in
the framework of time series theory and our application will concentrate on a recently
introduced and investigated class of linear regression time series models called the finite
discrete spectrum linear regression models (Stulajter et al [11, 12, 13]). In the rest of the
introduction we establish notation and recapitulate basic results and used models from
mentioned references, which provide a starting point for our further considerations. In
kriging we assume that we observe a time series X (.) satisfying a linear regression model
(LRM):

k
X(1) :Zﬁifi(t)+e(t);t:1,2,... (1)
i=1
where
B=(B1,P2,...,0:) €EFis a vector of regression parameters;

f1(), fo(L), ..., fx(.) are given known real functions defined on E; and

g(.) is a mean-zero time series (E{e(t)} = 0) with finite covariance functions Cov{e(s),e(t)} =
R(s,t);s,t =1,2,...

As we mentioned above, FDSLRM models are also linear regression models and are
defined in the following way:

Definition 1 A model of time series X (.) is said to be the finite discrete spectrum linear
regression model (FDSLRM), if X (.) satisfies

k !
X(t) = Bifi(t) + > Yyui(t) +w(t)it = 1,2, ... 2)
i=1 j=1
where
k and l are fized known monnegative integers, i.e. k,l € Ny;
B = (81,52, .., 0) € EF is a vector of unknown regression parameters;

Y = (Y1,Ys, ..., Y}) is al x 1 random vector with zero mean value, E{Y'} =0 € E!, and
with covariance matriz Cov{Y} = diag(ajz) of size | X I, where variances 0]2- >0 for
al j=1,2, .1

fi();i=1,2, ...,k and v;(.);j = 1,2, ..., 1 are known real functions defined on E;

w(.) is white noise time series with the dispersion D[w(t)] = 0% > 0 and it is uncorrelated
with Y.

We denote the unknown variance parameters of Y and w(.), which are also variance
parameters of the FDSLRM, by v = (02,02, ...,olQ)’. Under the FDSLRM assumptions
direct computation applied to the standard definition of the time series covariance function

l
R(s,t) yields its expression in the form R, (s,t) = 0265+ + >, sz-vj(s)vj(t); s,t=1,2,...
j=1

with the parameter v belonging to the parametric space T = (0, 00) x (0, 00)".
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The basic result dealing with any finite observation of the FDSLRM time series —
random vector X = (X (1),..., X (n)) — says that the observation X satisfies the following
linear regression model (also called the FDSLRM model):

!
X = FB+e¢,E{e} =0,Covic} = o*I, + Z 0']2-‘/j is a p.d. matrix, (3)
j=1

F = (fi fo ... fr) € E™F is the design matrix with columns f; = (fi(1),..., fi(n))’;

Vi = v € BV = (v(1),v5(2), ..., vj(n)); 5 = 1,2,...,1 are matrices describing the
structure of covariance matrix Cov(e) = X,.

Model (3) is equivalent to a model belonging to the class of linear mixed models (see
e.g. McCulloch & Searle [7], Christensen [3])*:

X =FB+VY 4w, E{w} = 0, Cov{w} = ¢*I,,, Cov{Y,w} = 0, (4)

where V' = (v; vy ... 1) € E™ and random vector w = (w(1),...,w(n))" is a finite
observation of white noise w(.). Symbols F,3,Y,w(.) and vj;j = 1,2, ...,] have the same
meaning as above. Properties of R(s,t) in FDSLRM gives us also another important
formula expressing covariance between observation X and some later value X(n + d),
which is used in kriging:

l
r, =Cov(X, X(n+d)) = Zajzvj(njtd)vj;t:l,l... (5)
j=1

For getting more specific and better idea what FDSLRM really is we summarize various
types of FDSLRM in Tab. 1.

Number of parameters Type of FDSLRM
white noise
k=0,1=0 (WN)
finite discrete spectrum models
= >
b=0121 (FDSM)
classical linear regression models
> =
k21,1=0 (CLRM)
B> general finite discrete spectrum
= linear regression models (GFDSLRM)

Table 1: Classification of FDSLRMs with respect to k,! — numbers of model parameters.

In this case unobservable vector 3 is frequently called a vector of ”fixed effects” and Y is an unobserv-
able vector of "random effects”.
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Two explicit, relatively simple examples of FDSLRM? are hourly observed electric
consumption at a department store in a typical day described by a time series model:

X (t) =p1 + Pacos Mt + B3 sin A\t
+ Y7 cos Aot + Yo sin Aot + Yz cos Agt + Yysin At + w(t);t =1,2,...,24

where \; = 27/24, Ao = 27/12, A\3 = 27/8 or weekly observed gasoline price?® in Slovakia
(2000):

3 3
X(t)=a1+ast+ > feosAit + Y yysin it +w(t);t =1,2,...,48
i=1 j=1

where A\; = 27/48, A2 = 27/16, A3 = 27 /8. In connection with Tab. 1 gasoline prices is
an example of CLRM and electric consumption an example of GFDSLRM.

In this paper we shall assume that both matrices F € E"** and V € E™*! are of full
rank?, i.e. »(F,V) = k 4 [ and number k 4 [ + 1 of unknown parameters 3 and v, which
arise in the FDSLRM (2), is smaller than length n of a realization x = (x1, 22, ..., x,) € E"
of finite observation X. We shall investigate the most general type of FDSLRM for which
k,l > 1 and Cov{Y} is nonsingular.

Finally it is worth to be aware of the close connection between prediction theory and
time series modeling, because one of criteria for a model selection, e.g. what is better?
using GFDRLSM or CLRM for gasoline prices?, can result from its influence on predictions
of time series data and as we see below it is appropriate to choose such model which gives
us "the least possible error” of prediction. So the paper also specify mathematically ”the
least possible error” and derives its particular and usable form for the class of FDSLRM
models.

2 GEOMETRICAL LANGUAGE OF HILBERT SPACES IN STATISTICS
2.1 The Hilbert space of random variables L*(Q, .7, P)

Although it is possible to study theory of time series without the geometrical lan-
guage of Hilbert spaces and an explicit use of related mathematical techniques, there are

great advantages to see concepts and algebraic results through eyes of the geometry. Pow-
erful intuition gained from Euclidean spaces E? and E3?, the most familiar examples of

2Examples were taken from Stulajter [10, 12]), where a reader can find details why and how these
models were selected.

3The basic idea of model building in case of gasoline prices consists in the following: (1) due to not fully
known physical mechanism of the economic phenomenon like a development of gasoline prices, we have to
combine the incomplete theoretical knowledge — in this economic time series application a seasonal effect
is expected — with (2) the mathematical-empirical approach, where on a basis of the corresponding data
graph the scheme of classical decomposition methodology (representing data as a sum of a trend component,
a seasonal component and a stationary random noise component) was suggested. (3) According to the
spectral theory of time series (generalized Fourier analysis) the season effect can be always modeled by
sine and cosine functions. This theory also provides a number of sine and cosine functions and estimations
of frequencies. (4) In trend modeling the central role is played by the principle of parsimony — we try to
employ the smallest possible number of parameters for adequate regression representation of a data trend.
For gasoline prices a linear function is such most parsimonious function which with the modeled seasonal
component leads to a residual random component not rejecting the assumption that it can be regarded as
a white noise time series — the simplest version of time series.

“To have no problems in distinguishing between a matrix product (FV) and (F V) as matrix F'
augmented by V', we will frequently write the matrix (F V) as (F, V).
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Hilbert spaces, allows us "natural” geometrical understanding and connections and makes
frequently complicated theoretical results more obvious.

From the theoretical viewpoint the concept of Hilbert space allows us to study si-
multaneously properties described by linear algebra (e.g. linear independence, dimension,
bases), metric properties (e.g. orthogonality, norm, angle) typical for geometry and prob-
lems of convergence, continuity or differentiability belonging to mathematical analysis.

Very briefly, a Hilbert space ¢ is a complete inner product space, or a linear space
possessing an inner product (-,-) and containing all of its limit points under the norm
||| defined in terms of the inner product by the expression ||-|* = (-,-). The detailed
explanation of the Hilbert space definition can be found e.g. in Brockwell [2].

Concerning statistics, an important example of a Hilbert space is a Hilbert space
L?(Q),.#, P). Notion of this space is based on the following procedure. Consider a col-
lection . of all random variables with finite second moments (E{U?} < co) defined on
the same probability space (€2,.%, P). If we consider an equivalence relation saying that
random variables T" and U are equivalent (or ”equal”) if they are equal almost everywhere
(Symbolically: T'= U < P(T = U) = 1), then this relation partitions . into classes
of random variables such that any two random variables in the same class are equal with
probability 1.

Since each class is uniquely determined by specifying any one of the random variables
in it, we shall use the same notation T, U for elements of 7 and to call them random
variables although it is sometimes worth to remember that U stands for the collection of
all random variables which are equivalent to U.

If we define an inner product as (T,U),» = E{TU};T,U € S, then it can be shown
(Brockwell [2]) that space 77 is a Hilbert space. The inner product easily leads to a useful
geometrical interpretation of key statistical concepts as it is summarized in Tab.2.

Statistical Geometrical
concept concept
mean value of a random variable
mean value of a product
mean value of a squared difference T — U||2
E{(T -U)*} -
dispersion
IU — E{U}II%

D{U} = E{(U — E{U})?}
stand?%latlon |U — E{U}||,»

covariance

Cov{T,U} = E{(T — E{T})(U — E{U})}

(T = BE{T},U - E{U}).»

Table 2: Key statistical concepts expressed in terms of geometrical concepts — inner prod-
uct and norm defined in Hilbert space /# = L?(),.%, P). The mean value of any random
variable from . is a statistical concept (in the left column), but it can be also considered
as a constant random variable - an element of .7 (in the right column).
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2.2 Geometrical proofs of some basic formulas

We illustrate advantage of this powerful geometrical viewpoint in deriving some basic
statistical formulas that we prove using mentioned geometrical concepts.

Mean value. Linearity of inner product says that (aT+bU, 1) ,» = a(T,1) 0 +b(U, 1) s;
T,U €  and a,b € E, which according to Tab. 2 corresponds to the well-known assertion
E{aT +bU} = aE{T} + bE{U}. It is worth to notice that for any two constant random
variables t,u € J : (t,u) » = E{tu} = tu.

Dispersion. The definition of the norm and linearity of inner product immediately
gives a formula

IT = U = 1713 + 1012 — 207U (6)

which is nothing else as a general statement of law of cosines for two vectors and its
difference (or a triangle formed by given vectors), known in E2 or E? as ||u — v||* = |lul|* +
| v]|* = 2 ||u|| |v]| cos§. (If u and v are orthogonal, then this reduces to the Pythagorean
theorem).

Using fact that E{U} is the constant we get according to previous section (see also
Tab.2) [E{UY% = (E{U}, E{U})x = [E{U}2 and (U, E{U})» = E{UNU 1) =
[E{U}]%. Taking T = E{U} in (6) we can write a basic formula for dispersion of any
Uesx

|U = E{U}% = UI% — [E{U}* or D{U} = E{U?} — [E{U}]>. (7)

If we are interested in D{T — U}, then (7) directly yields D{T — U} = E{(T —U)?} —
[E{T — U})2. But D{T — U} can be also expressed as ||(T — E{T}) — (U — E{U})Hif, S0
use of (6) leads to another basic formula

D{T ~ U} = T — B{T}|% + U = E{U}|I% — 2(T — E{T},U — E{U}).»
or in terms of statistical concepts (Tab.2)

D{T — U} = D(T) + D(U) — 2Cov{T, U}. 8)

3 BEST LINEAR UNBIASED PREDICTION IN TIME SERIES THEORY
3.1 A criterion for prediction quality

Formulation of the prediction problem. Now we briefly formulate the problem of kriging
prediction theory, assuming that given time series X (.) satisfies a linear regression model.

We observe finitely many values X = (X (1),..., X(n))’ of a time series X (.). We would
like to predict a future value of the time series: U = X(n + d);d € N or in other words
we find a random variable U = U(X), predictor, based on observation X in such way that
this predictor U of U is the best in some sense. What should be effective criterion of the
prediction quality of such predictor?

Heuristic considerations. To get a better intuitive idea, consider a specific situation,
e.g. a random variable U = X (n + d) describes an exchange rate between Slovak koruna
and U.S. dollar at time n + d (for example d = 1 means one week later) and we have two
predictors Uy, Us. We can take differences U — U, Uy — U and compare their realizations
after given week so we get an explicit result which predictor is better.” However it should

5Time series data of U.S. dollar to Slovak koruna exchange rate for last 5 years is available for example
at <http://finance.yahoo.com/currency/convert?from=USD&to=SKK&amt=1&t=>5y>.
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be intuitively clear that one realization of random variables Ul -U, f]g —U is not sufficient
for making a general conclusion. Because the situation is quite analogical to making a
decision who is taller? Slovakian or Austrian men? Comparison of two randomly chosen
men from both nations cannot be sufficient for such decision. We need to take many (or
all) men and compare them in average.

Statistical concepts for prediction quality. Therefore these considerations naturally
lead to the following concepts: the difference U — U is called the prediction error and
E{(U —U)?} is termed the mean squared error of U.

In geometrical language of Hilbert spaces (see Tab. 1) the mean squared error is a
squared distance between a predictor and predicted variable in space 7. Such interpre-
tation of MSE offers the approach — finding the best predictor means finding a predictor
whose squared distance from predicted variable is as small as possible. Or from the sta-
tistical viewpoint the best predictor U*(X) of U minimizes MSE of all predictors from a
given class of predictors:

Us(X) = arg;ninE{[U — X(n+d)*).

In spite of fact that MSE was chosen as an effective measure of the quality of any
predictor, it does not mean that prediction error has no meaning for prediction. For
example unbiasedness of predictor E{U} = E{U} can be stated as zero average prediction
error E{U — U)} = 0. Or for unbiased prediction according to (7) D{U — U} = E{(U —
U)?}, so in that case MSE of predictor is given by dispersion of the prediction error.

As we see bellow, for time series prediction it is important to know appropriate formula
for E{(T-U)%*} =T — UH?%;, so previous results (8) and (7) allow us to write for 7' = U
alU

E{({U - U)*} = (BE{U} — E{U})*> + D{U} + D{U} — 2Cov{U, U} (9)

3.2 Definition and basic form of the best linear unbiased predictor

If we consider a class of linear unbiased predictors (such predictors have some theoret-
ical and practical advantages and meaning which we mention in conclusion of the paper),
then we talk about the best linear unbiased predictor.

Definition 2 (BLUP) Let X = (X(1),X(2),...,X(n))" be an observation of a time
series X (.) given by LRM with unknown regression parameter 3 € EF. A random variable
X} (n+d) is called the best linear unbiased predictor of X (n + d), if it is:

(a) linear in X, i.e X(n+d) =dX + ap;a € E", qp € E,
(b) unbiased for all B3, i.e. E{Xi(n+d)} = E{X(n+d)} for all 3 € EF,
(c) best, i.e. minimizing the MSE in the class of all linear unbiased predictors:

Xi(n+d) = arg min E{[U — X(n+ d)]*},
U=d' X+ao; E{U}=E{X (n+d)}

Using formula (9) and the well-known expression about covariance from statistics:
Cov{a' X1 + ag, b/ Xo + by} = a’Cov{X1, Xo}b;a,b € E™;ap,by € E, we have for MSE of
BLUP

E{(X(n+d) —dX —ap)*} = (E{X(n+d)} — E{d'X + ao})* +ro +d'S,a — 2d'r,,
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where 19 = D{X(n+d)}, D{d’X + ap} = a’E,a and r, = Cov{X (n+d), X }.

Now our goal is to find a predictor satisfying all three conditions in the previous
definition for a linear regression model of X(.), whose observation X has a full rank
design matrix F and a full rank covariance matrix X, (a special case of such observation is
an observation of FDSLRM). We have adapted and prepared the complete, less traditional
geometrical argument® originally used for spatial kriging (see Stein [9]).

Linearity and Unbiasedness. In particular, condition (b) in case of linear predictors:
E{d'X +ap} = E{X(n+d)} has the form ' F3+ag = f'8 or (F'a— f)'3 = ag and these
equations must hold for all 3. The case 5 = 0 gives ag = 0 and thus in case of 3 # 0 F'a
must be f. The unbiasedness restricting condition is therefore equivalent to

ap =0 and F'a = f. (10)

Hence it is evident that a linear unbiased predictor exists and possess unbiasedness
condition (10) if and only if f belongs to Z(F') = {F'z|x € E"}, the row space of
F, or in other words if vector f is a linear combination of F’s rows. Such condition
holds automatically for example in our case of GFDSLRM with a full column rank F' [if
rank(F) = k, then number of linearly independent rows in F' is just k, so these rows
constitute a basis for E¥, which means that f € .Z(F")].

If a satisfies (10), then any linear unbiased predictor can be written as (a+¢)’'X where
F’c = 0 (vector ¢ and columns of F are orthogonal). The collection % of all linear unbiased
predictors U is

U ={U=(a+c)X;a,c € E": Fla= f and F'c = 0}. (11)

(D) ifU=(a+c¢)X;Fla= f,F'c=0, then F'(a+c¢) = f 4+ 0 = f, so according to (10)
U is unbiased; (C) if U = ¥’ X + by is unbiased, i.e. F'b = f,bg =0, let ¢ = b — a where
F'a= f,then Fle=F'b—Fa=0and U =0X = (a+ ¢)X].

Minimizing MSE. The BLUP minimizes the MSE among all predictors from %, where

E{(X(n+d) —(a+c)/X)*}=ro+(a+c)Sy(a+c)—2(a+c)r,
=r9—2dr, +adY,a+E,c—2(r, —3,a)c (12)
If we choose a* € E" satisfying simultaneously F'a* = f and (r, — X,a*) € Z(F),
i.e. it is a linear combination of F’s columns [as we see bellow, in our case it is always

possible], then there exists a vector b* such that r, — X,a* = Fb*, (r, — X,a*) ¢ = b"F'c
and the following expression for MSE holds

MSE,{(a* +¢)'X)} =19 — 2a¥r, + a"'S,a* + Tyc; c € E" : Fle = 0.

Since ¢'Y,c = D{c’ X} > 0, the lower bound for MSEs of linear unbiased predictors is
achieved for ¢ = 0, so ¥ X with a* € E" satisfying ¥,a* + Fb* = r,, F'a* = f (b* € E") is
the required BLUP X (n+d) of X(n+d) with MSE, {X(n+d)} = ro—2a*r, +a*3,a*.

Existence of a* and of the BLUP. The last equations for vectors a*, b* can be effectively

written in a matrix form
¥, F a* o Ty
(F o) (5 )=(7) 13

SFinding BLUP is a minimization problem with an auxiliary condition, so that it is standardly solved
by the Lagrange method of undetermined multipliers, see e.g. Stulajter [10].
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which have just one solution, if ¥, and F' are of full rank, because inverse of given block
matrix exists. [If rank(X,) = n and rank(F) = rank(F’) = k, then (n+ k) x (n + k)
block matrix (% g ) has also full rank n + k, which is necessity and sufficiency for the
existence of its inverse matrix]

Form of the BLUP. The preceding geometrical argument proves not only that under
our assumptions the BLUP always exists, but also provides a method how to construct
this BLUP. Applying the well-known Banachiewicz formula (see e.g. Zhang [14])

~1
A B A7t o —~A7'B 1 ;A—1
(o) =0 )5 7w cma )
where” W = C — B'’A!B, after some arrangements we get finally for a* and for BLUP
of X(n + d) with corresponding MSE:

at =% r, — BYE'S e, 4 BY f

Xp(n+d) = f'8;+r,5, (X - F3), (14)
MSE{X;(n+d)} = D{X(n+d)} =%, 'r, +||f — F’E;lm\};ﬁ* :

where

f=(filn+4d), foln+d),..., fr(n+d) €EF,

B = (F'S;'F)"'F'S;1X is the best linear unbiased estimator (BLUE) of 3 with the
covariance matrix Cov, {3;} = (F'S,'F)~! denoted Sz,

2
|z|Iy denotes a squared norm of a vector = defined as z’ Ax.

3.3 A block matrix form of the best linear unbiased predictor in GFDSLRM

In this section we apply obtained general form (14) of BLUP in case of FDSLRM
observation which is described by a linear mixed model. As we will see, in such case there
exists a formally much simpler form of the BLUP written by means of a partitioned (block)
matrix, which from the theoretical point of view is fundamental in deducing important
general conclusions about the BLUP prediction quality in various FDSLRM models. This
form results from the well-known Henderson’s mixed model equations developed in Hen-
derson et al [6] (see also [3, 8]) for linear mixed models, therefore we shall also call the
form Henderson’s form of the BLUP for general FDSLRM.

Henderson’s mixed model equations in case of FDSLRM observation have the form

F'R'F F'R™V g:\ [ FFRTX (15)
V'RT'F D'+ V'RV Yy ) \ V'R7X
where R = Cov{w} = 0%I, D = Cov{Y} = diag(a?), 3% is the BLUE for # and Y is
BLUP of Y based on the time series observation X. This BLUP is defined in same way as
BLUP for X (n + d) and its derivation (again without assuming normality) can be found

e.g. in Searle et al [8]. Substituting Cov{w} = oI into (15), we obtain a simplified form
of mixed model equations:

F'F F'V B\ [ F'X 16)
VF 2D +vv )\ vy ) \vix )

"W is called the Schur complement of A in K = (g, g)
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The form of the BLUP for Y has a similar structure as the BLUP for X (n + d)
BLUP(Y) =Y, = Cov{X,Y}S, }(X — Fg}),

where Cov{X,Y} = Cov{F+ VY 4+ w,Y} = VD. Since it is not difficult to see that r,
in FDSLRM equals V Dv, the BLUP for X can be written as

X;(n+d) = f'8,+ VY]

or using (16)

. (NN (N[ FF F'V L F'X
Xv(”+d)_<u> (Y;>_<u> (V’F UQD_1+V’V> <V’X>

The obtained results are summarized in the following theorem.

Theorem 1 (Block matrix form of the BLUP in general FDSLRM)
Let us consider a general FDSLRM (2), k,l > 1, with its corresponding observation X :

X=FB+e, E{e}=0, Cov,{X}=3%,=0*T+VDV,
where BEEY F=(fi fo ... fr),V=(v1v2..7v)aD= diag(o*]z). Let

E{X(n+d)}=f8, f=(filn+d), ... fuln+d),
Cov{X,X(n+d)} =VDv, v=(vi(n+d), ...,vn+d).

Then BLUP X;(n+d) of X(n+d) is given by:

Xi(n+d) =2G1Z2'X (17)
(f _ L 0 0
wherez-(v L =FV),G=2'Z+ 0 o2D-1)

For its MSE the following expression holds:
MSE[X}(n+d)] =c*(1+42G7'2). (18)

First of all this block matrix version of BLUP is computationally more economic than
original one (14), since original one requires finding inversion of ¥, of order n, whereas our
block matrix expression requires inversion of G of order k + [. The structure of this new
form of BLUP also leads to the following effective classification of FDSLRM models, which
describes a mutual geometrical relationship between columns of F' and V' and influences
significantly the structure of the MSE in the FDSLRM.

FDSLRM model is said to be:

(a) full-orthogonal, if f; L v; for i = 1,2,...,k; 7 = 1,2,...,], v; L v; for i,j =
1,2,...,0,i # jand f; L f; for i,j = 1,2,...,k,i # j. Then F'V = 0, F'F
and V'V are diagonal.

(b) orthogonal, if f; L v; for ¢ = 1,2,...,k; j = 1,2,...,1 and v; L v; for i,j =
1,2,...,1,i # j. Then F'V =0, V'V is diagonal.

(c) semi-orthogonal, if f; L v; for all 4, j. It means F'V = 0.
(d) nonorthogonal, if f; J v; for some i, j or if F'V # 0.
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4 CONCLUSION

In the paper we have presented main ideas of the best linear unbiased predictor (BLUP)
and its particular form in case of the so called finite discrete spectrum linear regression
models (FDLSRM).

Since selecting of the time series model for measured data is usually left on user,
e.g. gasoline price model from introduction could be also described by GFDSLRM, our
computationally economic matrix-block version of MSE for BLUP in FDSLRM, subject
to no assumption® imposed on the joint distribution of (X, X(n + d))’, can be effectively
used in comparing selected models from the viewpoint of the prediction.

Finally we summarize advantages of the best linear unbiased prediction. BLUP does
not depend on unknown mean value regression parameter (3 (this property was obtained
by requiring unbiasedness of predictors). It depends only on parameters of covariance
functions in its calculation, so there is no need to know the joint distribution of (X, X (n+
d))’. Even if the joint distribution is known, BLUP is much easier to calculate than the
conditional expectation E{X (n+d)| X} (having always smaller MSE), whose explicit form
is known only for a few distributions (moreover generally E{X (n + d)| X} is a nonlinear
function of X causing difficult theoretical study of its statistical properties).

However there are examples (see e.g. Stein [9]) when BLUP can be poor predictor.
Finally we have to remind that all derived results are based on the assumption that we
know ¥ = Cov{X} and r = Cov{X, X(n + d)}. However in practise this conditions
almost never holds. In such case we need to solve a problem of its estimation. In the
orthogonal FDSLRM the problem was studied and resolved by Stulajter & Witkovsky [12]
using modified DOOLSE estimators. For this type of the FDSLRM there were also studied
effects of such estimating on the MSE with the result that the suggested estimates give
asymptotically the same MSE as it would be given by unknown real parameters (Stulajter
13).

Concerning a general FDSLRM one (practically-minded) solution of the problem of
estimation v was recently given in Han¢ovéd [5] using the so-called natural estimators.
Results of the paper are needed as a theoretical basis for a similar study of effects of
estimating v on MSE of the BLUP in the semi-orthogonal and nonorthogonal FDSLRM
as it was done for orthogonal models.

REFERENCES

[1] G.E.P. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis, Forecasting and Con-
trol, 3'4 ed., Prentice Hall, New Jersey, 1994.

[2] P.J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 2" ed., Springer—
Verlag, New York, 1991

[3] R. Christensen, Advanced Linear Modeling: Multivariate, Time series and Spatial
Data, 2" ed., Springer—Verlag, New York, 2001

[4] A.S. Goldberger, Best linear unbiased prediction in the generalized linear regression
models, J. Am. Stat. Assoc. 57, pp. 369-375, 1962

8¢.g. without assuming normality.



40

MARTINA HANCOVA

[5]

M. Hanc¢ovda, Natural estimation of variances in a general finite discrete spectrum
linear regression model, Metrika, DOI 10.1007/s00184-007-0132-9, published online
first, www.springerlink.com, 2007

C. R. Henderson, S. R. Searle, O. Kempthorne, C. M. von Krosigk, Estimation of
Enviromental and Genetic Trends from Records Subject to Culling, Biometrics 15,
pp- 192-218, 1959

Ch. E. McCulloch and S. R. Searle, Generalized, Linear, and Mized Models, Wiley—
Interscience, New York, 2001

S. R. Searle, G. Cassella and C. E. McCulloch, Variance Components, Wiley—
Interscience, New York, 1992.

M. L. Stein, Interpolation of Spatial Data: Some Theory of Kriging, Springer—Verlag,
New York, 1999.

F. Stulajter, Predictions in Time Series Using Regression Models, Springer—Verlag,
New York, 2002

F. Stulajter, The MSE of the BLUP in a finite discrete spectrum LRM. Tatra Mt.
Math. Publ. 26, pp. 125-131, 2003

F. Stulajter and V. Witkovsky, Estimation of variances in orthogonal finite discrete
spectrum linear regression models, Metrika 60, pp. 105-118, 2004.

F. Stulajter, Mean squared error of the empirical best linear unbiased predictor in an
orthogonal finite discrete spectrum linear regression model, Metrika 65, pp. 331-348,
2007

F. Zhang, et al, The Schur Complement and Its Applications, Springer Science &
Business Media, New York, 2005



